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A method of constructing n Green’s tensor for systems of linear differential equations with 
constant coefficients, defined in a space of odd dimensionality, in terms of the Green’s 
tensor for a hyperplane, is given. Fundamental problems of the classical theory of elasticity 
of the internal stress theory and of the dislocation theory, are used as examples of the ap 
plication of the derived method to the problems in the field theory in anisotropic media. 

1. It is we11 known, that an n-dimensional’ scalar, or tensor Green‘s function G (x.) can 
be reduced, using the method of descent, to a Green’s function @(x, T) for an arbitrary (n- 
l)-dimeneional snbspace x, 7, = 0, orthogonal to the vectorT. In an unbounded apace we 
have 

@(x, ‘5) = 5 G(x-7S)ZdS (I.1 ) 
--CO 

where T is the length of the vector 7. Since # (x, T) is a function of the first argument, 
therefore, it is not a function of the n-dimensional vector X, it is a function of the (n - l)- 
dimensional vector x - T(X 7) ~‘2. 

We shall show that, for a wide class of equations given in an infinite, odd-dimensional 
space, solution of the converse problem is possible. 

2. L e m m a. Suppose that a function is given in an n-dimensional space, satisfying 
the condition 

G (ax) = ~9 sign a G (x) (2.4) 
where k is a natural number. Then G (x) can be determined in terms of the function @(x, T) 

defined by (l.l), with the help of the following expressions: 

G (T) = -Gail @(x, 7) (k= 1) 
i 

(- @-1 

G(T) = 2(/C--2)! 
DL-lfD(X'?) 

- (k>2) z 

P r 0 0 f. 2.19 If k = 1, the integral (1.1) diverges logarithmically and the definition 
of a(%, 7) must therefore be made more precise. Nevertheless, the gradient of this function 
can be determined uniquely 

co 

g-aqx, T)dDi(Xt 7)= 
i s G,i (x - TS) T ds 

--30 

(2.41 

Let us multiply (2.4) by z, . Using the Euler’s theorem for homogeneous functions, we ob- 
tain 

414 
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m m 

zpi (x, T) = - s G(x-TS)T~S+ s ST& (x - IS) t ds 

Observing that 

and integrating its 

--M e 

TiG,i (x - TS) -_ - $- G (x - TS) 

right-hand side by parts, we obtain 

S=W 
qDi (x, t) = - srG (x - TS) 

I 5=--30 
= - 2zG (T) 

2.2o. When k > 2, we apply the operator fl to both parts of the Eq. 

Q(x, 4 m 
-sz 

T s c (x - IS) ds 

--30 

and use the Euler’s theorem to obtain 

(2.5) 

D’co(x’ ‘) O” sx.G .(x-zts)dT O3 
03 

-=- 
T s 1 ,I 

.= k ( sG (x - TS) ds - [ s’%~C,* (x - TS) ds 

This on integral: by parts, yields 
--co -co 

D @(Xl 1) 
-=(k--22) J sG(x-rs)ds+sZG (x-e) I-_ 

T 
-co 

hence 

@ (x, ‘c) 
co 

L)y=- ZG(T) @ (x, 7) (k=2); D 7=: 
J_ 

(k-Z)sG(x- rs) ds (k > 2) 

AppIying the operator DkS2 to both parts of (2.5), we obtain 

0 (x, x) 
+a 7 

=(k-2)l f s”-~G (x - m) ds 

63 
Then 

LIh-‘F zzz (k - 2)l sh’c (x - 78) I;:== 

from which, taking into account (2.1), we obtain (2.4). 

3. Let us obtain the conditions of applicability of the Lemma of Section 2 to the Green’s 
tensors. To shorten the notation, we shall employ Greek letters for the indices assuming 
sf values, and use a single index to denote the components of tensors of rank 1. (As before, 
Latin alphabet will be used for the indices assuming n values). 

Let a linear, homogeneous, m-th order differential operator with constant coefficients 

La, = A~QP,...~~ V2, I... Vp, 
be given in an n-dimensional unbounded space. 

We shall consider the equation 

LaeJIs (X) + fa (X) = O 
and prove the following theorem. 

(3.1) 

T h e o r e m 1. A Green’s tensor of the system (3.1) or its derivatives, can be con- 
structed in odd-dimensional spaces in terms of a Green’s tensor for hypcrplanes, using re- 

lations of the type (2.2) and (2.3). 
P r o o f. We shall assume that a Green’s tensor G&X) exists, satisfying the Eq. 

L,&& (x) + 6,$ (x) = 0 (3.2) 
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Takiag inta account the fact that 

- C@* (ax) = cz (sign a)%&. (x) 

and putting n - m = k, we have 

if n if4 even (3.3) 

if R is odd 13.41 

If k < 0, then we consider the derivatives of the Green’s tensor 

CC-IG BY, Pl*..**Pt_k (x), if A is even (3.5) 

GBY, P ~<.“d+Pl--li (ax’= 
i 

a-1 sing aGBY, p,,,,,,P1_k (x), if R is add (3.6) 

Solution of the problem for the hyperplane xiT1 = 0 can be obtained with help of the 
Green’s tensor QPY (x, 7) defined by the following system of equations 

CD 

&q3@& f=, z1 t 6,, 
L 

6 (x - zsc9) z&s 
(3.7) 

If k > 1, we have 
M 

@p, (x, 7.) = c,, (K - CT) z ds (3-S) 

If k < 0, we can obtain the derivatives of the Green’s tensor 
a, 

Combining the relations (3.4), (3.6), (3.8) and (3.9) with the conditions of the Lemma, 
we confirm the validity of the theorem. 

4. Let us now assume that the field I,$ cannot be constructed with the help cf the point 
sources, ire. that the system (3.1) does not admit the const~ction of the ordinary Green’s 
tensor (3.2) and, that only a generalized Green’s tensor GcrqX.V,qr(~) exists, corresponding 
to an elementary extended source of $J ( mee BIgI 11-j). We find, that for the subspace zkrk= 
= 0, the generalized Green’s tensor’@,&, 7) haa a projection on the T-direction and is, 
therefore, of lower rank tltatt the tettsor G rrqt.**q,(@ 

(indices not involved in the contraction are omitted). We find that the Lemma of Section z 
is not valid for (4. l), the following theorem can, however, be formulated. 

Theorem 2. If the generalized Green’s tensor G, ,,,qz related to the general- 
ized Green’s tensors far the hyperplane X*T~ = 0 by (4.1) CffAe represented in the form 

P T o o f, Let us insert (4.3) into (4.2) and apply to-both sides the operator D”‘. Any 
function of the bivector 

. ” 
#j s e$ “cpxp 

will became zero under the action of this operator, tbereforc 
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a>, fx, Tf 
03 

1)"-1 
*1-r 

= pql I . _ y%QrgJ4 I_ fy 
ap,...prqi...qr fx - %sj ds 

Applying the results of the Lemma to the latter expression, we obtain 

(4.4) 

The r-fold contraction of the tensor’6 ’ with the bivector y’j in the right-hand side of 
(4.4), will be au r-th degree polynomial in the vector X, hence app$ing the operator $(...)/ 
ax 41 l ** are, to both parts of (u), we obtain the requir8d formula (4.3). 

1. As au example, we shalt consider some typicaf thre-edimensional probIems of the 
theory of elasticity of anisotropic media, reducing them to investigation of plane problems, 
in which the complex variable methods can be utilized. Various types of sources appearing 
in the classical theory of elasticity (potential fields, ordinary ‘Green’s fanctions), in the 
dislocation theory (vortex fields, generaiized Green’s functions) and in the internal stress 
theory (potential end bivortical fields and corresponding ordinary and generalized Greertrs 
functions depsnding on the definition of the source) can furnish various examples of appii- 
cation of the above theorems. Classification of the sources, the terminology and the basic 
equations, are taken from [i and 31. 

5.19 G r e e n’s t e n s or f o r a c on c e n t r a t e d f o r c 8. 
The ‘Green’s tensor G,$ satisfying Eq. 

e~~~~}.~,~~ (x) + Sims (x) = 0 (5.1) 

defines the displacement field ui for a unit concentrated force, in an anisotropic medium 
with elastic mod& Cijkl. 

We know f41 that the solution of (5.l) can be obtained in the explicit form only far some 
isolated cases. In the two-dimensional case of the plane ~$7~ = 0, the displacement field is 
described by the Green’s tensor aii (x, ‘7) satisfying t&e equation 

00 

‘ijk[@*m, lj fx9 z)+si, 

s 

8(x-m) zds 

“-x3 

By the Theorem 1 we have 

G$j (r) = - & z* & cp,i (x, +) 
k 

(5.2) 

5.29 Cre8II’s tensor for internal deformations, 
If the stresses are caused not by extemaf fore8s but by internal deformation8 80tt of arbi- 
trary origin (e.g. thermoelastic, strietional, pIastic era.), then the displacement field satis- 
fies 

Cijkt”Ji.&j=I.C.” 8” 
rJkl SE, j GW 

to which corresponds the following Green’s tensar: 

G. =& =c 
rjk ij iih 

c 
lk, m (5.4) 

Here u,~ ’ denota the ij.comp onent of the field of stress caused by a unit force acting 12, 

and 51 in the k&recti,on, while GlA is the ‘Green’s tsnsor for the concentrated force* 
In the twodimGnaiona1 case we have 

By Theorem II 

i.e, 
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~k(x)=-fr,-&- 
1 f @fj* (T, X) U*j" (X’) F (X = X-X', R = 1 X 1) 

For elastic deformations (5.7) 
i 

eti =T($, j + uj, 1) - S,j* = 
SI 

+ Iak,j (X) + 0kn.i (WI - S*ndjmd lx)} ein b’) tdx’) 
taking into account the fact that the index of homogeneity of the fanctiono $,f.(x) and 
S(X) is equd to - 3 we ha.ve according to Theorem 1, the following relation: 

s (dx’f 
Ej:” (T, X) e; (x’) R (5.8) 

where E:f (X, T) IO a two_dimen~on~l’Gresn’s tensor describing the field of slaatic defor- 
mation* Utik (X, I),- go ,l E$(X, 7) for an elementary source of a two-dimen#ional field 

m 

Qj” (X) = Cij* 
s 

8(x-sqT.8 (5.9) 
-w 

5.3O. C I e e n’s tensor for internal distortions. If 
the asymmetric internal distortion tensor u,,* is given, then the tennor a,,’ defining the dis- 
placement fields u* will again be the’Green’a tennor. Unlike the caoe 5.2’, we can cons- 
tract not only an elastic deformation tensor (3.7). but alao an asymmetric elastic distortion 
termor 

Ut* = Uk, * - u;** = s r=k*i m “i;, (x’) - 8 (X) Uik (x’) ] (dx’) = 

= s P&f (W &II (‘7 + xj8,i tx) u;;, (x’)] (ax’) = 

=: s I&$, ( tx) uk P3 + 'j&, h tx) ‘& (“11 tdx’) = S t&n, i tx) Xj”im,n fx’) J tdx’) 

S.4”. Green’s tensor for dislocations. Wsaregivena 
vortex nottree and the diolocntion density tensor 

Using the fact that 

0 

aij=-e. tkbj, k = eikIUlj,k 

s 
[Xjb~n,i (x) uim, j (“11 fdx’) =O 

(5.10) 

which can easily be ~onfim~ed performing the integration by parts and assuming’ that the 
homogeneity index of o&, is equal to - 3, we can transform (5.9) into 

‘ik = s 
xja&,* l”;m,,tx’)- uim, j WI W) = 1 “L&i (XI edlXjQlrn W) (dx’) (5.11) 

which corresponds to (4.2). The elementary, two-dimensional field source (rectilinear dia- 
location) 10 then given by 

02 

aij (X) = rfbj 
s 

6(X-%rr)dS (5.12) 

which correoponds.to (4.1). In the case of eztic distortion resulting from the rectilinear 
dinlocation whtie the Bargers vector b is given by 

we find, from (Lll), 

Uik (x, ‘I, W = b,ug (xv T.) 

co 

UT@, s)=e njlsjTf s h 
=rnn. i (x- TS) ds (5.13) 

from which, using the ‘Theorem 2, we obtain the following expreuion for the generalired 
Green’s tenmr: 



4x9 

and 

3s u;nk (r, WQ~~@')W') (5.14) 

for the distortion field reraltingirom the given diatribation of dislocations, in tsrmi of the 

distortion field (5.13) caused by rectilineu dislocationa, 
5.5O. Green’s tensor for the deformation incom, 

p a t i b i 1 i t y. Let a deformation incompatibility tensor be given in the form of a 

vortex source 

‘Iti=- e~k~ej~m~m~ kl= e *~~ej~~e~, kl (5.15) 

Using Expression (5.7) for the field of eiask deformation generated by the given intelc 
nal deformation diatdbntion and foflowfng the procedure nsed, ia deriving the generalized 
‘Green’s tensor for the dislocations, we obtain 

‘ij, A tX)=f e,pse,,ql 
s 

x,,xq b&i,. (x) + &,,(k (x)ltl,, @')@x') (5.16) 

The expression 
00 

Q j = TftjT-’ 
s 

6 (X - ~8) dS (5.17) 

defines the elementary, two-dimensional fie;hm(loarce. 
By Theorem 2, we have 

Differentiating (5.16) and (5.18) with mspect to xk we obtain the Laplaciau of the elas- 
tic deformations, and this, in turn, can be used to conmtrnct ‘&tj, with the aid of the given 
‘Green’s function of the Poisson eqaation. 

6. The method of co~&ncting’Greezt% tensora discussed in Section 5 can be made 
more efficient and aniform if, instead of the classicalGrew’s tensor C,, (x) of the theory 
of elasticity, we nse a8 a starting point the tensor 

L Gijrt (x) = - & ijmn 
s 

R, pplmGJq~ (X’) (“‘1 (6.1) 

which can be constructed f3] a~ easily, as GtI. Since G~kr (a, x) = 1 a I-‘Gsjgl x we have, 
by ‘Theorem 1, 

Gijkl (*)=- & srn$ Q)iiAl (x, 1) 
m 

(6.2) 

where aijki (x, Y) i a a two-dimensional analog of the tensor G 
wing formula follows: 

+I (x). From (6.1) the folio- 

c fjmnGAn,m- - GijAl, 1 (6.3) 
enabling ull to expm~~‘Green*a ten8of8 given in S.2* to 5.4o in terms of the haOr Cijki 

"&)=--S G ijh[, 1 (Xl eij” tx’) tdx’) (6.4) 

eij (i) = - 4 s tGmn+j, Ak + Gmnii, k); &&t (X’) tdx’) - ejj' 

Uih (x) = - 
S Gti.t, pp%pX8%(X’) Vx’) 

and obtain an explicit form of the Green% tensors for the elastic deformation discnaaed in 
5.s” 

1 
eij (X))=- 2 eSIJ*, 

f IenjqGmnfk 3- e,iqGmjkl ‘~pq (x’) @X7 



as we11 as the following internal stresses 

bij (xl = - Cijh l emtp eneq s Gmnl, trlpq ix’) @*‘I (6.8) 

In particular we note that, using the tensor Gijkl we can construct a dislocation field 
of a unit dislocation loop (an analog of the Burges formula for the anisotropic medium) 

7. The above reauIts admit a simple geometric interpretation. Since action of the sour- 

ces in different directions in the anisotropic medium could not be compared with each other 

we have made use of the simiIarity rule (2.1) for the sources acting along the same direction 

replacing the existing distribution of sources, with another distribution exerting the same 

action on the point under consideration. Then we can base the construction of the n-dimen- 

sional Green’s function G (x) in terms of an (n - If-dimensional Green’s function@ (X, T), 
on the process of replacement of a line source of constant strength corresponding to the 

function @(I[, T), by another line source situated not along the r-axis, but along the X-axis, 

and of varying strength distributed along the source according to the law: skm2 sign s. 

Indeed 
<\. 

where s ‘= 5-l , and we find that the (k - I)-th derivative of the field in the direction of the 

source, corresponds to the point source field, i.e. yields a’Green’s function. 

The similarity rule can be used in the same msnner to express elastic distortions in 

terms of the first moment of the dislocation distribution, and the gradient of elastic deforma- 

tions in terms of the second moment of the deformation incompatibility distribution. Geome- 

tric approach to the analysis of various source fields based on the similarity relations was 

developed by the authors in[6], while [7] deals with the application of the method to the 

theory of dislocations. 
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