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A method of constructing a Green’s tensor for systems of linear differential equations with
constant coefficients, defined in 2 space of odd dimensionality, in terms of the Green's
tensor for a hyperplane, is given, Fundamental problems of the classical theory of elasticity
of the internal stress theory and of the dislocation theory, are used as examples of the ap-
plication of the derived method to the problems in the field theory in anisotropic media.

1. It is well known, that an n-dimensional scalar, or tensor Green’s function G (x) can
be reduced, using the method of descent, to a Green's function ®(x, 7) for an arbitrary (n-
1)-dimensional subspace %, 7, = 0, orthogonal to the vector . In an unbounded space we

have
[es]

O(x, %)=\ G(x—rs)ds (1.1)
—00
where 7 is the length of the vector 7. Since ® (X, 7) is & function of the first argument,
therefore, it is not a function of the n-dimensional vector X, it is a function of the (n — 1)-
dimensional vector X — T(X 7) 7°2,
We shall show that, for a wide class of equations given in an infinite, odd~dimensional
space, solution of the converse problem is possible.

2. L e m m a. Suppose that a function is given in an n-dimensional space, satisfying
the condition
G (ax) = o™ signa G (x) 2.1)
where & is a natural number. Then G (X) can be determined in terms of the function ®(x, T)
defined by (1.1), with the help of the following expressions:

G(t):—%{xi%q)(x, ) (k=1) (2.2)

(=1 i @x, )
G(T)‘z(k-z)!D T
Proof 21° Ifk=1, the integral (1,1) diverges logarithmically and the definition
of @ (x, T) must therefore be made more precise, Nevertheless, the gradient of this function
can be determined uniquely

k=2 D=2z (. o; (2.3)

oG
a
_5}? Ox, 1)= (D'i (x, 1)= S G’,i (x—18)T ds (2.4)
_—10
Let us multiply (2.4) by ;. Using the Euler's theorem for homogeneous functions, we ob-
tain
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0
S ST,G (X —1s) T ds

—c0

:cid)'i(x, T)=— S G(x—xs)tds +
-—00

Observing that
d
TiG.i (%~ 18) = — T G (x —1s)

and integrating its right-hand side by parts, we obtain

s=
z,® (X, T) = — TG (X — 15) o= 216G (1)
2.2°. When k > 2, we apply the operator D to both parts of the Eq.
oG
@ (x, ¥) .
— = G(x —s)ds (2.5}
e G
and use the Euler*s theorem to obtain
oo o] oo
@ (x, 1)
D — == sarl.G’i (Xx—18)ds ==k S G (x — 1s) ds — ‘S‘ szrl.G'i (x — ts) ds
—00 —C0 —on

This on integration by parts, yields

Dgg?—‘)z(k~2) S 3G (x — 15) ds - s2G {x — 15) ::(jw
hence -
D(x, 1) D (z, ¢
D-——-—(-;—-=_.26(r} (k=2); D-——-if—-’l= S (k—2)sG (x —15)ds (k>2)

—oc
Applying the operator D¥°? to both parts of (2.5), we obtain

o]
D"—ﬁﬂ:—ﬂz(huml S 572G (x — 1) ds
—0)
Then
4 @k, 1) : =
L2 Wil v BN S k —
D - == (k —2)1 "G (x — 15) oo

from which, taking into account (2.1), we obtain (2.4).

3. Let us obtain the conditions of applicability of the Lemma of Section 2 to the Green’s
tensors. To shorten the notation, we shall employ Greek letters for the indices assuming
nt values, and use a single index to denote the components of tensors of rank I. (As before,
Latin alphabet will be used for the indices assuming n values).

Let a linear, homogeneous, m-th order differential operator with constant coefficients

L,g = AaBp,...pm VPI---va

be given in an n-dimensional unbounded space.
We shall consider the equation

Lagpa (x) + fa (x) = 0 (3.1)
and prove the following theorem.

Theorem 1. A Green's tensor of the system (3.1) or its derivatives, car be con-
structed in odd-dimensional spaces in terms of a Green’s tensor for hyperplanes, using re-
lations of the type (2.2) and (2.3).

P r o of. We shall assume that a Green’s tensor G 57(}:} exists, satisfying the Eq.

LGy (%) + 84,8 (x) =0 3.2)
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Taking into account the fact that
Gy (ax) =™ " (signa)™Gg, (X)
and putting n — m = k, we have

-
o Gy, (X), i i 3.3
8y, (ax) = By ( if n is even  (3.3)

-k o1 N s

a " signay, (x) if n is odd (3.4)

If k£ < 0, then we consider the derivatives of the Green’s tensor

a2 Cay b Pyt (x) if n is even {3.5)
33 .
G, puveepr—  OX)= a~tsingaGg, Peeeos Prak (x), if n is odd (3.8)

Solution of the problem for the hyperplane x;7; = 0 can be obtained with help of the
Green’s tensor (Dﬁ'y (X, 7) defined by the following system of equations

LogDg, (%, 1)+ 8, 5‘ 8 (x — vs) Tds 3.7
—0
If £> 1, we have
D, (x, 1) = 5‘ G (X—%5) T ds (3.8)
—

1f £ < 0, we can obtain the derivatives of the Green’s tensor

o0
ug, prvnys 0 V= § Gt gy, (K W)V @3.9)
—co
Combining the relations (3.4), {3.6), (3.8) and {3.9) with the conditions of the Lemma,
we confirm the validity of the theorem.

4. Let us now assume that the field yr cannot be constructed with the help of the point
sources, i,e. that the system {3.1) does not admit the construction of the ordirary Green's
tensor (3,2) and, that only a generalized Green’s tensor Ga. (x) exists, corresponding
to an elementary extended source of i (see e.g. [1}). We find "hat for the subspace x, 7, =
= 0, the generalized Green’s tensor d o(X, T) has a projection on the T-direction and is,

therefore, of lower rank than the tensor G Lo ac®
o]
DX, ¥) =Tq . - - TqT" § Coyoogy (x—15)ds (4.1)
—CXd

(indices not involved in the contraction are omitted). We find that the Lemma of Section 2
is not valid for (4.1), the following theorem can, however, be formulated.

Theorem 2. If the generalized Green’s tensor G, . related to the general-
ized Green’s tensors for the hyperplane x, 7, = 0 by (4.1) can be represented in the form

bk i Ty Gatyerit py.ooh, (4.2)

Geagy...qp = Eaypy - - - €q 2 5py -
where e“ = 8 8' _8 8’ , and'G@ * satisfies (2.1), then

— Pt ar i1 Py (x, T
G‘qr""r (%)= 2rf (ke — 2)1 ééazq1 N D 1~ (4.3)
T

Pro o f. Letus insert (4.3) into (4.2) and apply to both sides the operator D*-1. Any
function of the bivector
¥V = el 1,7,
will become zero under the action of this operator, therefore
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4

&P1... P, Gs

frod
D w= yPr | yPr3rphei S ¢
0
Applying the results of the Lemma to the latter expression, we obtain
(.m‘l)h"'l h1 @, (x, 1)
2 (k— 2)! o
The r-fold contraction of the tensor'G’ with the bivectory?/ in the right-hand side of
{4.4), will be an r-th degree polynomial in the vector X, hence applying the operator 3*(...}/
0%y, +ee %g, to both parts of (4.4), we obtain the required formula (4.3).

e g, {(x—1s)ds

’

= o P11 Prly
=y v Y GGP:mP,Q:---qr (v)

(4.4)

%. As an example, we shall consider some typical three-dimensional problems of the
theory of elasticity of anisotropic medis, reducing them to investigation of plane problems,
in which the complex variable methods can be utilized. Various types of sources appearing
in the classical theory of elasticity {potential fields, ordinary Green's functions), in the
dislocation theory {vortex fields, generalized Green’s functions) and in the internal stress
theory (potential and bivortical fields and corresponding ordinary and generalized Green's
functions depending on the definition of the source) ¢an furnish various examples of appli-
cation of the above theorems, Classification of the sources, the terminology and the basic
equations, are taken from {2 and g].

51°% Green's tensor for a concentrated force.

The Green’s tensor G” satisfying Eq.

Ciin1Crm,i; (X + 8,8 (x) =10 (5.1)
defines the displacement field u,; for a unit concentrated force, in an anisotropic medium
with elastic moduli C ;.

We know {4] that the solution of (5.1) can be obtained in the explicit form only for some
isolated cases. In the two-dimensional case of the plane x,7; = 0, the displacement field is
described by the Green’s tensor (I)ii {x, T) satisfying the equation

)
Cit1@rm, 1; %, O+ 8, S § (x— s) vds
)

By the Theorem 1 we have
1 2
Gii(ty=—37 7%, 7, @j; (x, 7) (5.2)

52% Green's tensor for internal deformations.
If the stresses are caused not by external forces but by internal deformations agﬁ of -arbi=
trary origin {e.g. thermoelastic, sirictional, plastic e.a.), then the displacement field satis-
fies

sﬁ-?dus‘:, uy= b CijkIS:;l, ; (5.3)
to which corresponds the following Green’s tensor:
(.
G =55 = CijtmGix, m (5.4)

Here 0, k denote the ij-component of the field of stresa caused by a unit force acting [ 2,
and 5] in the k~direction, while G}y, is the Green’s tensor for the concentrated force.
In the two-dimensional case we have

Pir = Ciitm P .5)
By Theorem 1, itk Htm v lE,m
8 {D’l'}g (x, 7}
GO=—TE T T 5.6

i.e,
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1 3 dx’
w@=—7 %7 [ 0 e Ner e G x=x—x, B=1xD)

For slastic deformations (5.7)

1 1 ; o . .
1 =g 0,5+ 15,0 — 27 = {7 5 0+ O 01 = 8,81, (K0} 5, () (@)
taking into account the fact that the index of homogeneity of the functions th j'(x) and
5(x) is equal to — 3 we have according to Theorem 1, the following relation:
1 ) ! o . {dx)

&, (X) = 5 Tm¥s Fzdzy SE}{' (v, X)e;; (x) (R {5.8)
where E :f (X, T)is a two-din'x:n-ionnl‘creen'c tensor describing the field of elastic defor-
mations &, (X,7T)= ¢°,l E,l (x,r) for an elementary source of a two-dimensional field

o0

e;° (X) =#y5° S S(x—rvs)rds (5.9)

—CQ

53° Green's tensor for internal distortions. If
the asymmetric internal distortion tensor u, © is given, then the tensora“"‘ defining the dis~
placement fields u, will again be the 'Green's tensor. Unlike the case 5.2°, we ven cons-
truct not only an elastic deformation tensor (5.7), but also an asymmetric elastic distortion
tensor

UL=u, j— u: == S E"fmz,i (X} u;m {x)—8(X) u:k {(x)] @x)=
= [ 5,4 00 v ()4 X8, 0 w5, 01 05) =

= S [0, ¢ (K) i () + X0 0 K)  ( (05 = { 85, 4 00 X 3 060 @)

54°, Green'’s tensor for dislocations. Wearegivena
vortex source and the dislocation density tensor

%4 = T i, kT Crty k (5.10)
Using the fact that

S [X ;0,1 (X) Upm, ; (X)] (@) =0

which can easily be confirmed performing the integration by parts and assuming that the
homogeneity index of au’:n. ;is equal to — 3, we can transform (5.9} into

Ui = S XJ'G:MJ [u;m.n x)— u:nm,i (x7] (@x) = g cﬁm.i X) em'lxialm (x) (dx") (5-11)
which corresponds to (4.2). The elementary, two-dimensional field source (rectilinear dis-
location) is then given by

w
ay; (%) =185 S 8 (x—xs)ds (5.12)
-0
which corresponds to (4.1). In the case of elastic distortion resulting from the rectilinear
dislocation where the Burgers vector b is given by
v, (X, %, b)=b_ul(x, 1)
we find, from (5.11),
o
ult (%, V) =e ;7 S Oy, ¢ (X — ¥5) ds 5.13)
-0
from which, using the Theorem 2, we obtain the following expression for the generalized
Green's tensor:
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K 1 ar ®
it %mn, 1t () = — 3~ 5z, ["’ﬂn 7 z)]
and
i a’ 8 m ’ »
Uik (x) = —g W 814%i -+ Bjgv1 4+ 1Y 31,-;] S ug (v, X)ag, (x)(dx")  (5.14)

for the distortion field resulting from the given distribution of dislocations, in terms of the
distortion field (5.13) caused by rectilinear dislocations.

55°. Green’s tensor for the deformation income
patibility, Letadeformation incompatibility tensor be given in the form of a
vortex source R

N5 = — CikmCitmEmn, B = €ikm CiinBmn, L1 (5.15)

Using Expression (5.7) for the field of elastic deformation generated by the given inter-
nal deformation distribution and following the procedure used im deriving the generalized
‘Green’s tensor for the dislocations, we obtain

1 . ,
B X =7 e X XX, O, i (X)+ 0hpp i K]0, (X) (dX)  (5.16)
The expression
00
i = 7T S 8 (x —vs)ds (5.47)
—00.
defines the elementary, two-dimensional field source.
By Theorem 2, we have

1 8 a3
Bk 00 =—"F Fr, 5%, "mn" Gar a0, S Reyjp 8 Xim, (x)@x)  (5.19)

Differentiating {5.16) and (5.18) with respect to %) we obtain the Laplacian of the elas-
tic deformations, and this, in turn, can be used to construct ‘gy; with the aid of the given
‘Green’s function of the Poisson equation,

6. The method of constructing Green's tensors discussed in Section 5 can be made
more efficient and uniform if, instead of the classical Green’s tensor Gy, (x) of the theory
of elasticity, we use as a starting point the tensor

i "~ (ix
Gijl.’t x) =~ i GijmnS R‘ pplmG}.'n (x’) (dx’) (6.1)
which can be constructed [3] as easily, as Gy Since Gy (@, X) = | & ["1Gy5;,; X. we have,
by Theorem 1,
1 i}
G () =—5= Bz D1 (%, 7) (6.2)

where "D‘- ikl {X,'T) is a two-dimensional analog of the tensor G"I"‘ 7 {X)s From {6.1) the follo-
wing formula follows:

CijmnGin, m= Giji1, 1 (6.3)
enabling us to express'Green's tensors given in 5.2° to 5.4° in terms of the tensor Gljld
e (%) = —S Gt 1 (X) 82 (X) (dX) (6.4)
#;; (X)=— '%‘ S [Grmnis, 1k -+ Gmngs, kx 1Emn (X) (@X') —&;° (6.5)
uy, (%) = — S Gty pp it X i () (dX) (6.6)

andoohtain an explicit form of the Green's teusors for the elastic deformation discussed in
5.5

1{ . .
€5 (xy=— b3 eﬂ"'PS‘ Icnqumnik + eniaaﬁmill Npe (x) @x’) ©.7
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as well as the following internal stresses
%3 (x)=— Cijhlem!p neq S Grnt. Mpq (x') (dx') (6.8)

In particular we note that, using the tensor G;;;; we can construct a dislocation field
of a unit dislocation loop (an analog of the Burges formula for the anisotropic medium)
b,
1 ’
Uy = @t emby &Ghlij (X) dzy, (6.9)
(o

7. The above results admit a simple geometric interpretation. Since action of the sour-
ces in different directions in the anisotropic medium could not be compared with each other
we have made uge of the similarity rule (2.1) for the sources acting along the same direction
replacing the existing distribution of sources, with another distribution exerting the same
action on the point under consideration. Then we can base the construction of the n-dimen-
sional Green's function G (X} in terms of an (n — 1)-dimensional Green's function @ (x, 7),
on the process of replacement of a line source of constant strength corresponding to the
function @ (x, T), by another line source situated not along the T-axis, but along the X ~axis,
and of varying strength distributed along the source according to the law: s*°2 sign s.

Indeed

jae)
®(x, 1) = s G (x — %s)tds =
—c0
[ord

= °§ s* signsG <—§~1) tds = — \ (—s') signs’G (v —xs)vds’  (7.1)

where s "= 5*1, and we find that the (k — 1)-th derivative of the field in the direction of the
source, corresponds to the point source field, i.e, yields a Green’s function.

The similarity rule can be used in the same manner to express elastic distortions in
terms of the first moment of the dislocation distribution, and the gradient of elastic deforma-
tions in terms of the second moment of the deformation incompatibility distribution. Geome-
tric approach to the analysis of various source fields based on the similarity relations was
developed by the authors in |6], while [7] deals with the application of the method to the
theory of dislocations.
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